Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 342: 118088, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37201389

RESUMEN

Nano zero-valent manganese (nZVMn) is theoretically expected to exhibit high reducibility and adsorption capacity, yet its feasibility, performance, and mechanism for reducing and adsorbing hexavalent uranium (U(VI)) from wastewater remain unclear. In this study, nZVMn was prepared via borohydride reduction, and its behaviors about reduction and adsorption of U(VI), as well as the underlying mechanism, were investigated. Results indicated that nZVMn exhibited a maximum U(VI) adsorption capacity of 625.3 mg/g at a pH of 6 and an adsorbent dosage of 1 g/L, and the co-existing ions (K+, Na+, Mg2+, Cd2+, Pb2+, Tl+, Cl-) at studied range had little interference on U(VI) adsorption. Furthermore, nZVMn effectively removed U(VI) from rare-earth ore leachate at a dosage of 1.5 g/L, resulting in a U(VI) concentration of lower than 0.017 mg/L in the effluent. Comparative tests demonstrated the superiority of nZVMn over other manganese oxides (Mn2O3 and Mn3O4). Characterization analyses, including X-ray diffraction and depth profiling X-ray photoelectron spectroscopy, combined with density functional theory calculation revealed that the reaction mechanism of U(VI) using nZVMn involved reduction, surface complexation, hydrolysis precipitation, and electrostatic attraction. This study provides a new alternative for efficient removal of U(VI) from wastewater and improves the understanding of the interaction between nZVMn and U(VI).


Asunto(s)
Manganeso , Uranio , Manganeso/análisis , Uranio/análisis , Aguas Residuales , Adsorción , Agua/química , Iones , Concentración de Iones de Hidrógeno , Cinética
2.
Chemosphere ; 318: 137971, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36708777

RESUMEN

Zero-valent manganese (ZVMn) possesses high reducibility in theory, while sulfide exhibits strong affinity towards a variety of heavy metals owing to the low solubility of metal sulfides. Yet the performance and mechanisms on using sulfidized zero-valent manganese (SZVMn) to remove thallium (Tl) from wastewater still remain unclear. In this study, the performance of Tl(I) removal using SZVMn synthesized by borohydrides reduction followed by sulfides modification, with and without liquid nitrogen treatment, was compared and the mechanism behind was investigated. The results show that at a S/Mn molar ratio of 1.0, liquid nitrogen modified SZVMn (LSZVMn) possessed more interior channels and pores than SZVMn, with 65.3% higher specific surface area and 73.7% higher porosity, leading to 6.4-8.1% improvement in adsorption of Tl(I) at pH 4-10. LSZVMn showed effectiveness and robustness in Tl(I) removal in the presence of co-existing ions up to 0.1 M. The adsorption of Tl(I) conformed to the pseudo-1st-order kinetic model, and followed the Langmuir isothermal model, with the maximum Tl adsorption capacity of 264.9 mg·g-1 at 288 K. The mechanism of Tl(I) removal with SZVMn was found to include sulfidation-induced precipitation, manganese reduction, surface complexation, and electrostatic attraction. The liquid nitrogen pretreatment embrittled and cracked the outer shell of S/Mn compounds, resulted in a highly hierarchical structure, enhancing the manganese reduction and improving the Tl(I) removal. Based on the above results, the SZVMn and its liquid nitrogen-modified derivatives are novel and effective environmental materials for Tl(I) removal from wastewater, and the application of SZVMn to the removal of other pollutants merits investigation in future study.


Asunto(s)
Talio , Contaminantes Químicos del Agua , Talio/análisis , Aguas Residuales , Manganeso , Contaminantes Químicos del Agua/análisis , Adsorción , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...